Characterization of para-Nitrophenol-Degrading Bacterial Communities in River Water by Using Functional Markers and Stable Isotope Probing.

نویسندگان

  • Agnieszka Kowalczyk
  • Özge Eyice
  • Hendrik Schäfer
  • Oliver R Price
  • Christopher J Finnegan
  • Roger A van Egmond
  • Liz J Shaw
  • Glyn Barrett
  • Gary D Bending
چکیده

Microbial degradation is a major determinant of the fate of pollutants in the environment. para-Nitrophenol (PNP) is an EPA-listed priority pollutant with a wide environmental distribution, but little is known about the microorganisms that degrade it in the environment. We studied the diversity of active PNP-degrading bacterial populations in river water using a novel functional marker approach coupled with [(13)C6]PNP stable isotope probing (SIP). Culturing together with culture-independent terminal restriction fragment length polymorphism analysis of 16S rRNA gene amplicons identified Pseudomonas syringae to be the major driver of PNP degradation in river water microcosms. This was confirmed by SIP-pyrosequencing of amplified 16S rRNA. Similarly, functional gene analysis showed that degradation followed the Gram-negative bacterial pathway and involved pnpA from Pseudomonas spp. However, analysis of maleylacetate reductase (encoded by mar), an enzyme common to late stages of both Gram-negative and Gram-positive bacterial PNP degradation pathways, identified a diverse assemblage of bacteria associated with PNP degradation, suggesting that mar has limited use as a specific marker of PNP biodegradation. Both the pnpA and mar genes were detected in a PNP-degrading isolate, P. syringae AKHD2, which was isolated from river water. Our results suggest that PNP-degrading cultures of Pseudomonas spp. are representative of environmental PNP-degrading populations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and characterization of 3-nitrophenol-degrading bacteria associated with rhizosphere of Spirodela polyrrhiza.

INTRODUCTION The accelerated biodegradation of 3-nitrophenol (3-NP) in the rhizosphere of giant duckweed (Spirodela polyrrhiza) was investigated. MATERIALS AND METHODS Biodegradation of 3-nitrophenol in the rhizosphere of a floating aquatic plant, S. polyrrhiza, was investigated by using three river water samples supplemented with 10 mg l(-1) of 3-NP. Isolation and enrichment culture of 3-NP-...

متن کامل

Benzene and Naphthalene Degrading Bacterial Communities in an Oil Sands Tailings Pond

Oil sands process-affected water (OSPW), produced by surface-mining of oil sands in Canada, is alkaline and contains high concentrations of salts, metals, naphthenic acids, and polycyclic aromatic compounds (PAHs). Residual hydrocarbon biodegradation occurs naturally, but little is known about the hydrocarbon-degrading microbial communities present in OSPW. In this study, aerobic oxidation of b...

متن کامل

Lignocellulose-responsive bacteria in a southern California salt marsh identified by stable isotope probing

Carbon cycling by microbes has been recognized as the main mechanism of organic matter decomposition and export in coastal wetlands, yet very little is known about the functional diversity of specific groups of decomposers (e.g., bacteria) in salt marsh benthic trophic structure. Indeed, salt marsh sediment bacteria remain largely in a black box in terms of their diversity and functional roles ...

متن کامل

Oral Session I 022616 TR_HW

The Deepwater Horizon (DWH) blowout in the northern Gulf of Mexico represents one of the largest marine oil spills. Significant shifts in bacterial community composition in the water column correlated to the microbial degradation and utilization of oil hydrocarbons. Nevertheless, the full genetic potential and taxon-specific metabolisms of bacterial hydrocarbon degraders enriched during the DWH...

متن کامل

Vegetation composition and soil microbial community structural changes along a wetland hydrological gradient

Fluctuations in wetland hydrology create an interplay between aerobic and anaerobic conditions, controlling vegetation composition and microbial community structure and activity in wetland soils. In this study, we investigated the vegetation composition and microbial community structural and functional changes along a wetland hydrological gradient. Two different vegetation communities were dist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 81 19  شماره 

صفحات  -

تاریخ انتشار 2015